如图,过点A(3,6)的抛物线y=ax2+bx-(3除以2)与x轴交于B,C两点,且此抛物线的对称轴是直线x=-11、

来源:学生作业帮助网 编辑:作业帮 时间:2017/10/20 04:02:38
如图,过点A(3,6)的抛物线y=ax2+bx-(3除以2)与x轴交于B,C两点,且此抛物线的对称轴是直线x=-11、如图,过点A(3,6)的抛物线y=ax2+bx-(3除以2)与x轴交于B,C两点,

如图,过点A(3,6)的抛物线y=ax2+bx-(3除以2)与x轴交于B,C两点,且此抛物线的对称轴是直线x=-11、
如图,过点A(3,6)的抛物线y=ax2+bx-(3除以2)与x轴交于B,C两点,且此抛物线的对称轴是直线x=-1
1、

如图,过点A(3,6)的抛物线y=ax2+bx-(3除以2)与x轴交于B,C两点,且此抛物线的对称轴是直线x=-11、
问题没写全啊

如图,过点A(3,6)的抛物线y=ax2+bx-(3除以2)与x轴交于B,C两点,且此抛物线的对称轴是直线x=-11、 如图①,抛物线y=ax2+bx+c过原点,且当x=- 3 2 时有最小值如图①,抛物线y=ax2+bx+c过原点,且当x=-3 2 时有最小值,并经过点A(-4,2),同时AB平行于x轴交抛物线于点B;(1)求该抛物线的解析式和点B的坐 如图,已知抛物线y=ax2+bx+c经过O(0,0)如图,已知抛物线y=ax2+bx+c经过O(0,0),A(4,0),B(3,根号3)三点,连结A,B,过点B作BC平行x轴交抛物线于点C.(1)求这条抛物线的函数解析式;(2)两个懂点P,Q分 已知如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)用配方法求出抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D, 如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.(1)求抛物线的函数 如图抛物线y=ax2+bx+c(a≠0)过点(1,0)(0,-2),且顶点在第三象限,设P=4a-2b+c,则P的取值范围是A-6 如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式; 如图,已知抛物线Y=ax2+bx+c的顶点坐标为Q(2,—1),且与Y轴交与点c(0,3),与x轴交与A,B两点(点A再点B的右侧),点P是抛物线上的一动点,从点C沿抛物线向A运动(点P与A不重合),过点P作PD//Y轴,交 如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P 如图,已知抛物线y=ax2+bx+c(a不等于0)经过点A(2,0),B(1,0),C(0,3),连接AC,点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A.C均不重合),过点P作PE垂直X轴,与AC交于点E,连接AP.(1)求该抛物线的函 如图,抛物线y=ax2+bx(a>0)与双曲线y=k/x相交于点A,B.点A的坐标为(1,4)点B在第三象限内,S△AOB=3①求出抛物线的解析式②过抛物线上点A作直线AC‖x轴,交抛物线于另一点C,求所有满足△EOC∽△A 如图,抛物线y=ax2+bx+c(a 如图,抛物线Y=ax2-2ax-b(a 如图 抛物线y=ax2+bx+2与x轴交于A,B两点,点A的坐标为(-1,0),抛物线的对称轴为直线x=二分之三.点M为线段A、B上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=-x+n于点c.(3)过P作PQ平行AB交抛物 如图,抛物线y=ax2+bx(a>0)与双曲线y=k/x相交于点A,B.点A的坐标为(1,4)点B在第三象限内,S△AOB=3 ①求出抛物线的解析式②过抛物线上点A作直线AC‖x轴,交抛物线于另一点C,求所有满足⊿EOC~⊿ 如图,二次函数y=ax2+bx+c的图像经过A(-1,0),B(3,0)两交点,且交y轴于点C(0,-3)1)求b,c的值2)过点C作CD//X轴交抛物线与点D,点M为抛物线的顶点,试确定三角形MCD的形状 已知如图,抛物线y=ax2+bx+c过点B(3.0)且经过直线y=-3x-3与坐标轴的两个交点A,C一,求抛物线的解析式二,若D点是在y轴的右侧的抛物线上的一动点,过点D作直线AC的垂线,垂足为E,是否存在D点,使得C,D,E 如图①,抛物线y=ax2+bx+c过原点,且当x=-3 2 时有最小值,并经过点A(-4,2),同时AB平行于x轴交抛物线如图①,抛物线y=ax2+bx+c过原点,且当x=-32时有最小值,并经过点A(-4,2),同时AB平行于x轴交抛物线